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Dansson, Stempfle, Egilsdottir, …, J., Alzheimer’s Research & Therapy, 2021

4-year progression

New subject 
at baseline

Alzheimer’s disease
at follow-up?

𝑋& 𝑌
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Follow-up Time

Subject on new 
treatment
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effect

𝑋& 𝑌Treatment A
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We can minimize the empirical prediction risk over a data set 𝐷

If 𝒎 is large and drawn from 𝑝, &𝑅' ℎ ≈ 𝑅 ℎ ≔ 𝔼( 𝐿 ℎ 𝑋 , 𝑌

(𝑥!! 𝑦!), (𝑥!" 𝑦"),
{ }, ⋯, 

𝐷 =

&ℎ = arg min
)∈ℋ

&𝑅' ℎ , !𝑅! ℎ ≔ "
𝒎
∑$%"& 𝐿 ℎ 𝑥"$ , 𝑦$

Empirical risk

Expected risk
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When we use &ℎ for new (test) subjects, we only have 𝑋&

We want to predict their future progression based only on 𝑋&

Test time

𝑥! 𝑌

?
Test subject
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But we often know more about subjects in training data

Training time

* Tons of examples in healthcare and elsewhere: 30-day mortality prediction, user churn prediction, predicting crop yields

Intermediate observations
(e.g., repeated cognition tests)

𝑥! 𝑦𝑥# 𝑥$ 𝑥%…

Baseline

Training subject

Outcome
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OutcomeIntermediate observations

𝑥! 𝑦𝑥# 𝑥$ 𝑥%…

Baseline

Privileged information

Available at training time, 
but not at test time

Input

Training and test

Target

Training
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In standard ML, privileged information 𝑋,, … , 𝑋- is discarded

— Learning from baseline-outcome pairs 𝑥&&, 𝑦& , … , 𝑥&., 𝑦.

In fact, given enough samples, we can estimate 𝑓 without PI…
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PI is useful in data poor domains!
~60% fewer samples needed for same result

Equal neural architecture
Same observations w/wo PI

Classical

Privileged
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PI is useful in data poor domains!
~60% fewer samples needed for same result

Equal neural architecture
Same observations w/wo PI

Classical

Privileged

How can we use privileged information?

Can we prove that it will be useful? 



11

We measure quality of an algorithm 𝒜 ∶ 𝒟 → ℋ by its expected risk

?𝑅 𝒜 ≔ 𝔼' 𝑅 𝒜 𝐷 where 𝑅 ℎ ≔ 𝔼 𝐿 ℎ 𝑋& , 𝑌

An efficient learner is one that, on average, outputs a hypothesis 

with smaller risk for the same number of samples 𝑚 = 𝐷
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We consider learners using two types of data sets

Classical learners 𝒜/: (𝑋&0 , 𝑌0) — Only baseline time

Privileged learning 𝒜1: (𝑋&0 , … , 𝑋-0 , 𝑌0) — Entire time series 

When can we prove that PI is useful for a fixed sample size? 

?𝑅 𝒜1 < ?𝑅 𝒜/ ?
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Learning using privileged information

Pechyony & Vapnik1 showed that there are cases where privileged 
information leads to learning rate improvements

𝑅 𝒜1 − &𝑅 𝒜1 ≤ 𝑂 &
𝒎 instead of.  𝑅 𝒜/ − &𝑅 𝒜/ = 𝑂 &

𝒎

However, the result is limited to a highly specialized data generating 
process and kicks in only when 𝑚 is already large

1Pechyony & Vapnik, NeurIPS, 2010

Fast rate Slow rate
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Surrogate learning

Surrogate learning1, 2 shows that surrogate outcomes (instead of 𝑌) 
improve asymptotic efficiency when 𝑌 is sometimes missing

However, the results are uninformative when 𝑌 is observed as 
often as the surrogates (privileged information)*

* The theory was not developed for our setting

1Kallus & Mao, On the role of surrogates…, 2020, 2Athey et al., The Surrogate Index, 2019

𝑥! 𝑦 — Sometimes missing'𝑦 — Surrogate
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Causal effect estimation

Guo & Perkovic1 showed that recursive least-squares is the most 
efficient regular estimator of total causal effects in linear SEMs

Using “post-treatment” variables ⇒ higher asymptotic efficiency

1Guo & Perkovic, JMLR, 2022

𝑋

𝑌

𝑝(𝑌 ∣ 𝑑𝑜 𝑋 = 𝑥 )?



Assumption on causal structure

The privileged information is Markov
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Setting 1. The DGP is a linear-Gaussian chain

𝑋34& = 𝑋3𝐴3 + 𝜖34& where    𝜖34& ∼ 𝒩 0, 𝜎,𝐼
𝑌 = 𝑋-5𝛽 + 𝜖6 where    𝜖6 ∼ 𝒩 0, 𝜎6,

We don’t assume stationarity. I.e., 𝐴3 ≠ 𝐴37 in general.

No assumption on 𝑿𝟏! 

!!
"!

!"
""

!# !$
#

$…

Observed Privileged Unobserved
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Classical learner
Single-step prediction

𝒜/ 𝐷 = 𝑿&5𝑿& 9&𝑿&5𝒀

Privileged learner
Every-step prediction

𝒜1 𝐷 = Z𝐴&⋯ Z𝐴-9& Z𝛽

:𝜃
:𝐴! :𝐴" :𝛽𝑋! 𝑌 𝑋! 𝑌

1. Both estimators return linear regressions of 𝑋&
2. Both are unbiased estimators of 𝔼 𝑌 ∣ 𝑋& = 𝐴&⋯𝐴-9&𝛽 5𝑋&
3. The only difference is variance—sample efficiency 
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Theorem 1 (informal). Assume that 𝑋&, … , 𝑋-, 𝑌 is a linear-
Gaussian chain with isotropic noise. Then, 

?𝑅 𝒜1 ≤ ?𝑅 𝒜/ − 𝔼<)!,>" Var' &ℎ/ 𝑋& ∣ &ℎ1

Since Var ⋅ ≥ 0, learning using privileged information is never 
worse under the conditions of Theorem 1. 

*The variance in the classical estimator is larger—despite the privileged learner fitting 𝑇 − 1 𝑑! + 𝑑 parameters!

Karlsson, Willbo, Hussein, Krishnan, Sontag, J.AISTATS, 2022

Remaining variance in ?ℎ& when ?ℎ' is fixed 
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Key step
The privileged learner is both sufficient statistic 𝑇 and estimator 𝛿&

Lemma. For &𝜃/ and &𝜃1 = Z𝐴&⋯ Z𝐴- Z𝛽 the classical and privileged 
estimators, respectively, it holds that

𝔼' &𝜃/ Z𝐴&, … , Z𝐴-, Z𝛽 = Z𝐴&⋯ Z𝐴- Z𝛽 = &𝜃1

An example of a Rao-Blackwell technique

𝑇(𝐷) 𝛿!𝛿
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4-year Follow-up Time

Subject at baseline

Alzheimer’s disease?
At follow-up

Privileged

Classical

Privileged, stationary
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Nonlinearity through latent dynamics
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Setting 1: Linear-Gaussian
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Observed Privileged Unobserved
* Jung & Johansson, Accepted to NeurIPS, 2022

𝔼 𝑌 ∣ 𝑋! = 𝐴!⋯𝐴"#!𝛽 $Φ(𝑋!)

is nonlinear!

Setting 2: Latent system, 
nonlinear emissions:
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𝔼 𝑌 ∣ 𝑋! = 𝐴!⋯𝐴"#!𝛽 $Φ(𝑋!)

is nonlinear!

Setting 2: Latent system, 
nonlinear emissions:

𝑍&…𝑍- is a linear-Gaussian 
system like before. Now, 
only observed through 
nonlinear 𝑋3 = Ψ 𝑋3
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Nonlinearity through latent dynamics
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only observed through 
nonlinear 𝑋3 = Ψ 𝑋3
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Latent linear-Gaussian system

Theorem 2 (informal). Assume that 𝑍&, … , 𝑍-, 𝑌 is an isotropic 
linear-Gaussian chain and 𝑋3 = Ψ 𝑍3 with 𝚽 = 𝚿9𝟏 known up to 
linear transform, explicitly or as a kernel 𝑘 𝑥, 𝑥7 = 𝜙,𝜙7 . Then,

?𝑅 𝒜1 ≤ ?𝑅 𝒜/ − 𝔼<)!,>" Var' &ℎ/ 𝑋& ∣ &ℎ1

1. Implication is the same as before, but the setup is generalized
2. Limited to partial knowledge of Φ

* Jung & Johansson, Accepted to NeurIPS, 2022
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Random feature representations

If the representation Φ is unknown, random feature embeddings can 
be used consistently for both classical and privilieged learners.

Random features are iΦ = 𝜎 𝑊𝑋 w. nonlinearity 𝜎, random 𝑊. 
— For example, random single-layer ReLU NN

Proposition. if either learner uses Z𝑑 random features for iΦ
𝒜1// 𝐷 → 𝑓 as 𝑚 > Z𝑑 → ∞



27

Random feature regression*

We see both benefits of 
nonlinearity and of 
privileged information 

For linear estimators, 
bias compounds in the 
privileged learner

Map all 𝑋" using random ReLU/Fourier features, fit OLS estimators as before

Privileged Classical

Classical linear

Privileged linear
(compounding bias)

Benefit of 
nonlinearity
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Privileged representation learners

We can construct multiple representation learning architectures iΦ
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Privileged 

Rep. Learners
● SRL
● GRL
●● CRL

Classic Rep.
Learner &Φ
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Neural network regression

Data generated from a latent 
linear-Gaussian system, 
𝑍&, … , 𝑍- ∈ ℝ,.

Observed variables 𝑋 are 
image representations of 2D 
coords., like “clock faces”

Outcome is linear in 𝑍

1Lopez-Paz, Bottou, Schölkopf, abs/1511.03643, 2015

Privileged Classical

1
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Take-aways

- Preference for privileged learners is independent of 
sample size (finite regime) — the gap varies with 𝑚

- Privileged information explains part of the variance in 𝑌

- Random features and learned representations both 
perform better empirically with privileged information
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Open questions

- Results in the biased / regularized case? 
- (E.g., finite sample random features)

- Causal structures beyond chain graphs (arbitrary DAGs?)

- Finite-sample preference guarantees beyond Rao-Blackwell
- The theorem requires being able to characterize the predictions made by 

𝒜% conditioned on 𝒜&. Possible for OLS but not in general
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