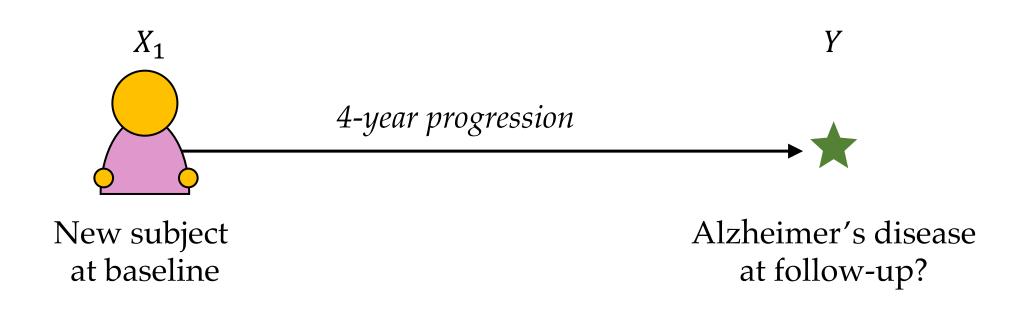
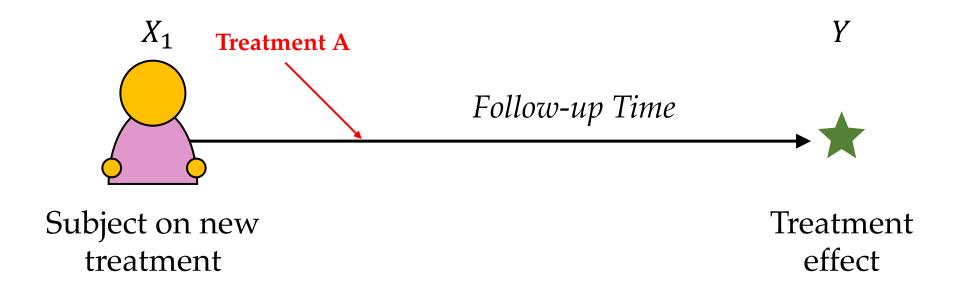


Efficient learning using privileged information with known causal structure

Fredrik D. Johansson Sep 18, 2022





We can minimize the *empirical prediction risk* over a data set *D*

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{arg min}} \ \hat{R}_D(h), \quad \hat{R}_D(h) \coloneqq \frac{1}{m} \sum_{i=1}^m L(h(x_1^i), y^i)$$
Empirical risk

$$D = \left\{ \bigotimes_{i=1}^{m} \bigstar_{i=1}^{m} \ldots_{i=1}^{m} \bigotimes_{i=1}^{m} \bigstar_{i=1}^{m} \ast_{i=1}^{m} \right\}$$

$$(x_{1}^{1}, y^{1}) (x_{1}^{m}, y^{m})$$

If **m** is large and drawn from p, $\hat{R}_D(h) \approx R(h) \coloneqq \mathbb{E}_p[L(h(X), Y)]$ Expected risk

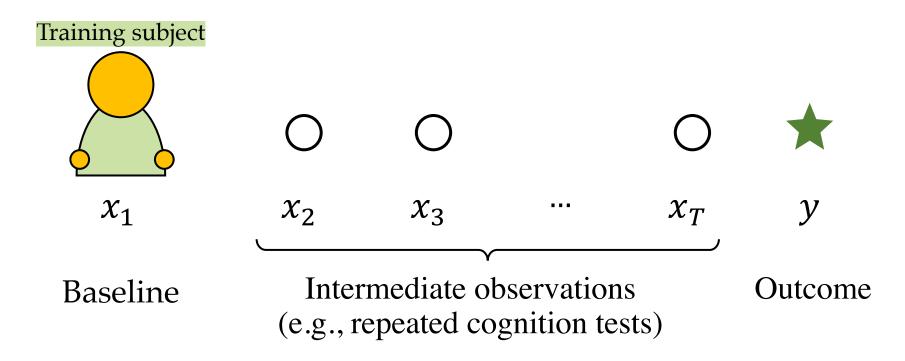
Test time

When we use \hat{h} for new (test) subjects, we only have X_1

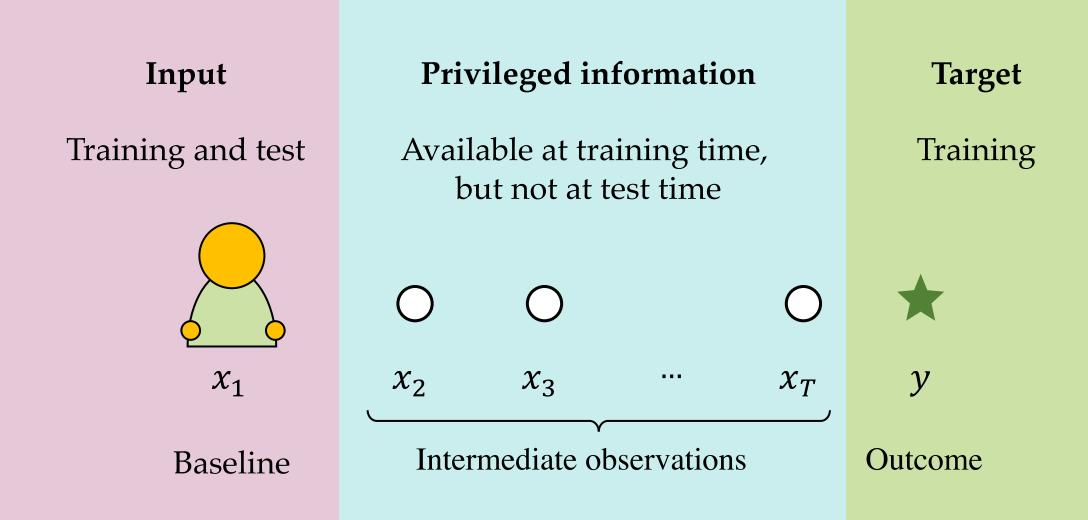
We want to predict their **future** progression based only on X_1

Training time

But we often know more about subjects in training data



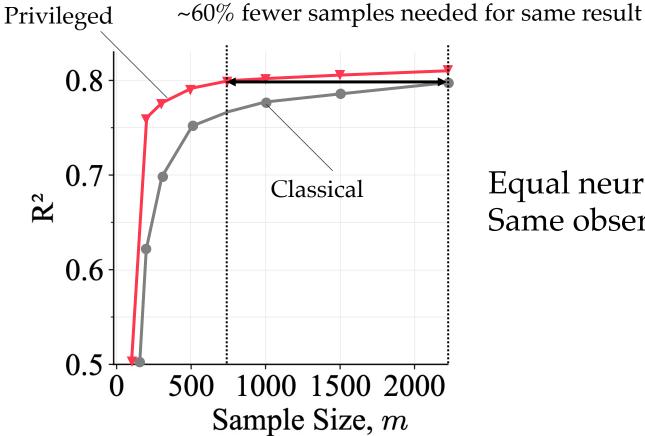
* Tons of examples in healthcare and elsewhere: 30-day mortality prediction, user churn prediction, predicting crop yields



In standard ML, privileged information $X_2, ..., X_T$ is discarded — Learning from baseline-outcome pairs $(x_1^1, y^1), ..., (x_1^m, y^m)$

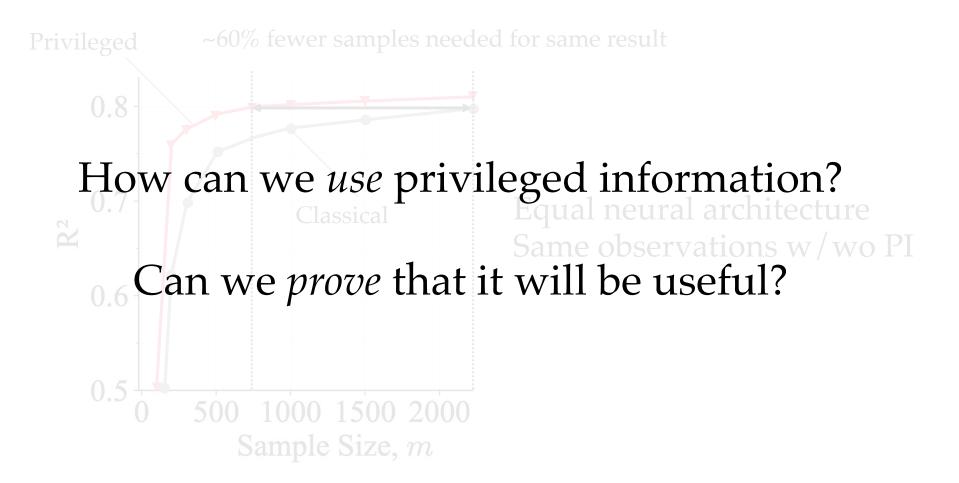
In fact, given enough samples, we can estimate *f* without PI...

PI is useful in data poor domains!



Equal neural architecture Same observations w/wo PI

PI is useful in data poor domains!



We measure *quality* of an algorithm $\mathcal{A} : \mathcal{D} \to \mathcal{H}$ by its expected risk

 $\overline{R}(\mathcal{A}) \coloneqq \mathbb{E}_{D}[R(\mathcal{A}(D))]$ where $R(h) \coloneqq \mathbb{E}[L(h(X_{1}), Y)]$

An **efficient** learner is one that, on average, outputs a hypothesis with smaller risk for the same number of samples m = |D|

We consider learners using two types of data sets

Classical learners \mathcal{A}_{C} : (X_{1}^{i}, Y^{i}) — Only baseline time

Privileged learning \mathcal{A}_{P} : $(X_{1}^{i}, ..., X_{T}^{i}, Y_{i})$ — Entire time series

When can we prove that PI is **useful** for a fixed sample size?

 $\overline{R}(\mathcal{A}_{\mathrm{P}}) < \overline{R}(\mathcal{A}_{\mathrm{C}})?$

Learning using privileged information

Pechyony & Vapnik¹ showed that there are cases where privileged information leads to learning rate improvements

$$\left|R(\mathcal{A}_{\mathrm{P}}) - \hat{R}(\mathcal{A}_{\mathrm{P}})\right| \le O\left(\frac{1}{m}\right)$$
 instead of. $\left|R(\mathcal{A}_{\mathrm{C}}) - \hat{R}(\mathcal{A}_{\mathrm{C}})\right| = O\left(\frac{1}{\sqrt{m}}\right)$

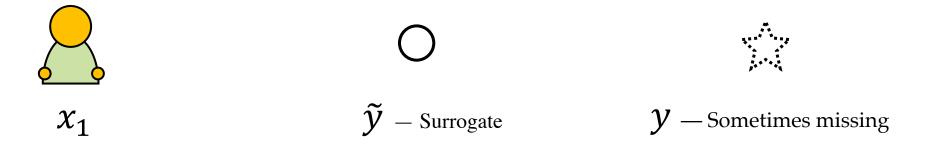
Fast rate

Slow rate

However, the result is limited to a *highly specialized* data generating process and kicks in only when *m* is already *large*

Surrogate learning

Surrogate learning^{1, 2} shows that surrogate outcomes (instead of *Y*) improve asymptotic efficiency when *Y* is sometimes missing



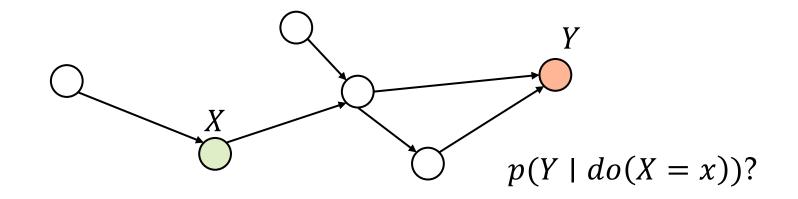
However, the results are uninformative when *Y* is observed as often as the surrogates (privileged information)*

* The theory was not developed for our setting

¹Kallus & Mao, *On the role of surrogates...*, 2020, ²Athey et al., *The Surrogate Index*, 2019

Causal effect estimation

Guo & Perkovic¹ showed that *recursive* least-squares is the most efficient regular estimator of **total causal effects** in linear SEMs



Using "post-treatment" variables ⇒ higher asymptotic efficiency

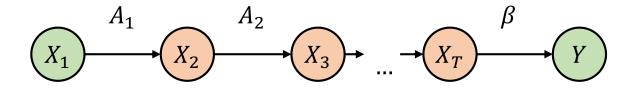
Assumption on causal structure

The privileged information is Markov

Setting 1. The DGP is a linear-Gaussian chain

$$\begin{aligned} X_{t+1} &= X_t A_t + \epsilon_{t+1} & \text{where} \quad \epsilon_{t+1} \sim \mathcal{N}(0, \sigma^2 I) \\ Y &= X_T^{\mathsf{T}} \beta + \epsilon_Y & \text{where} \quad \epsilon_Y \sim \mathcal{N}(0, \sigma_Y^2) \end{aligned}$$

No assumption on *X*₁!



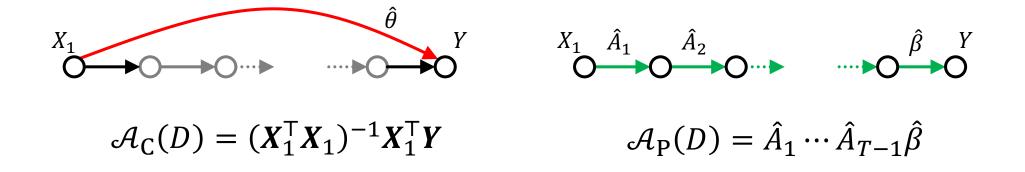
We don't assume stationarity. I.e., $A_t \neq A_t$, in general.

Classical learner

Single-step prediction

Privileged learner

Every-step prediction



- 1. Both estimators return linear regressions of X_1
- 2. Both are unbiased estimators of $\mathbb{E}[Y \mid X_1] = (A_1 \cdots A_{T-1}\beta)^\top X_1$
- 3. The only difference is variance—sample efficiency

Theorem 1 (informal). Assume that $X_1, ..., X_T, Y$ is a linear-Gaussian chain with isotropic noise. Then,

$$\bar{R}(\mathcal{A}_{\mathrm{P}}) \leq \bar{R}(\mathcal{A}_{\mathrm{C}}) - \mathbb{E}_{\hat{h}_{\mathrm{P}},X_{1}}\left[\operatorname{Var}_{D}(\hat{h}_{\mathrm{C}}(X_{1}) \mid \hat{h}_{\mathrm{P}})\right]$$

Remaining variance in \hat{h}_C *when* \hat{h}_P *is fixed*

Since $Var(\cdot) \ge 0$, learning using privileged information is never worse under the conditions of Theorem 1.

*The variance in the classical estimator is larger—despite the privileged learner fitting $(T - 1)d^2 + d$ parameters!

Karlsson, Willbo, Hussein, Krishnan, Sontag, J. AISTATS, 2022

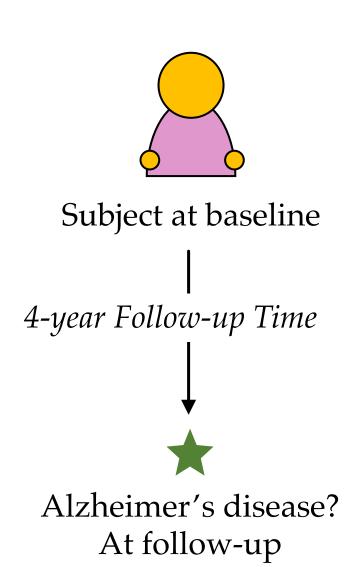
Key step

The privileged learner is both sufficient statistic *T* and estimator δ_1

Lemma. For $\hat{\theta}_{C}$ and $\hat{\theta}_{P} = \hat{A}_{1} \cdots \hat{A}_{T} \hat{\beta}$ the classical and privileged estimators, respectively, it holds that

$$\mathbb{E}_{D}\begin{bmatrix}\hat{\theta}_{\mathsf{C}} \mid \underline{\hat{A}_{1}, \dots, \hat{A}_{T}, \hat{\beta}}\\ \delta & T(D) \end{bmatrix} = \hat{A}_{1} \cdots \hat{A}_{T} \hat{\beta} = \hat{\theta}_{\mathsf{P}}$$

An example of a Rao-Blackwell technique



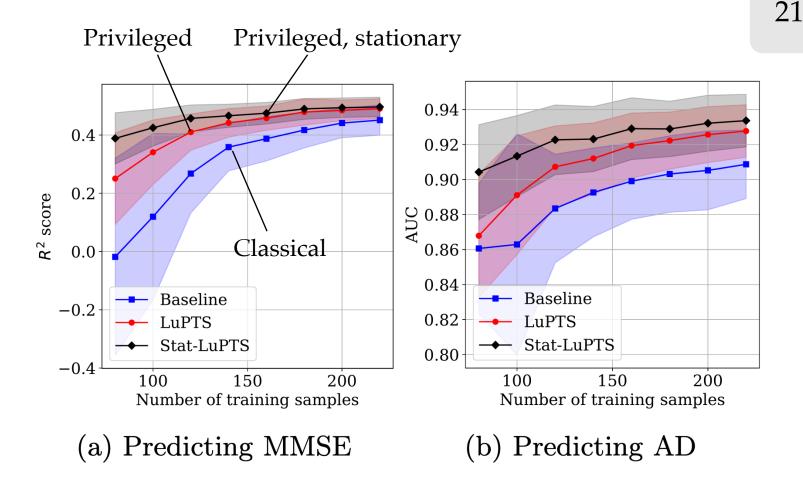
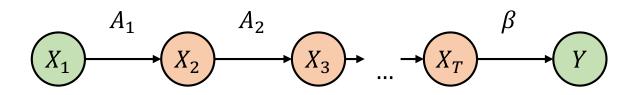


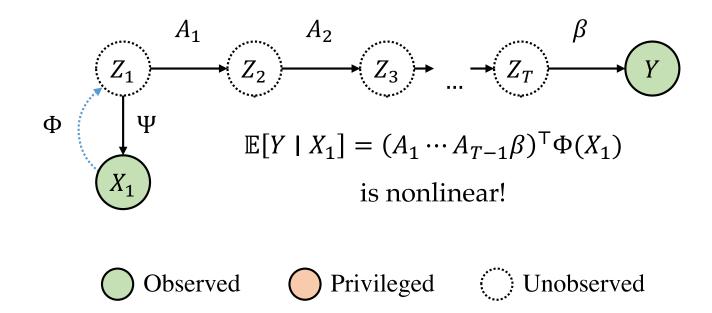
Figure 4: Alzheimer's disease progression tasks. Follow-up at 12, 24 and 36 months after baseline as privileged information. Metrics used are R^2 /AUC; shaded region corresponds to one standard deviation across 100 iterations.

Nonlinearity through latent dynamics

Setting 1: Linear-Gaussian

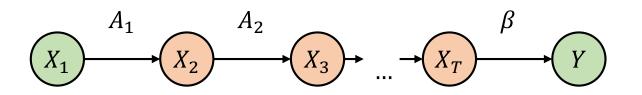


Setting 2: Latent system, nonlinear emissions:



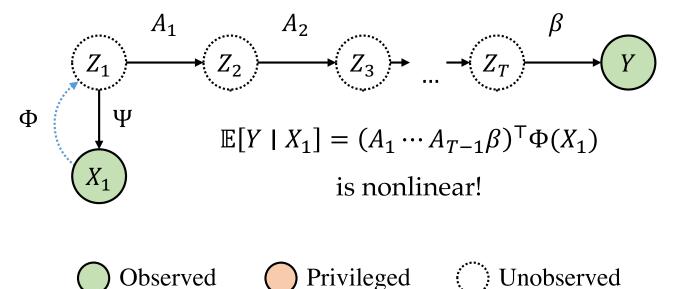
Nonlinearity through latent dynamics

Setting 1: Linear-Gaussian



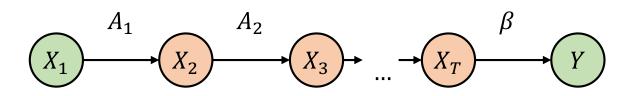
Setting 2: Latent system, nonlinear emissions:

 $Z_1 \dots Z_T$ is a linear-Gaussian system like before. Now, only observed through nonlinear $X_t = \Psi(X_t)$



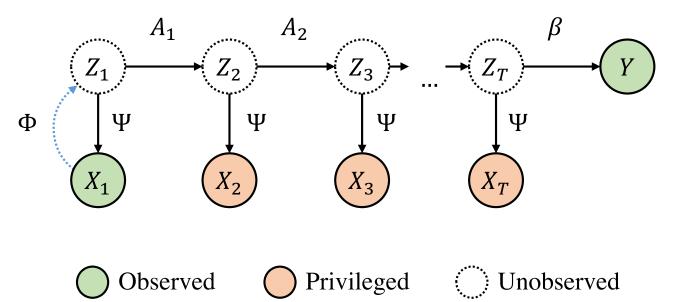
Nonlinearity through latent dynamics

Setting 1: Linear-Gaussian



Setting 2: Latent system, nonlinear emissions:

 $Z_1 \dots Z_T$ is a linear-Gaussian system like before. Now, only observed through nonlinear $X_t = \Psi(X_t)$



Latent linear-Gaussian system

Theorem 2 (informal). Assume that $Z_1, ..., Z_T, Y$ is an isotropic linear-Gaussian chain and $X_t = \Psi(Z_t)$ with $\Phi = \Psi^{-1}$ known up to linear transform, explicitly or as a kernel $k(x, x') = \langle \phi, \phi' \rangle$. Then,

$$\overline{R}(\mathcal{A}_{\mathsf{P}}) \leq \overline{R}(\mathcal{A}_{\mathsf{C}}) - \mathbb{E}_{\widehat{h}_{\mathsf{P}},X_{1}}\left[\operatorname{Var}_{D}(\widehat{h}_{\mathsf{C}}(X_{1}) \mid \widehat{h}_{\mathsf{P}})\right]$$

- 1. Implication is the same as before, but the setup is generalized
- 2. Limited to partial knowledge of Φ

Φ

Random feature representations

If the representation Φ is unknown, *random feature embeddings* can be used consistently for both classical and privilieged learners.

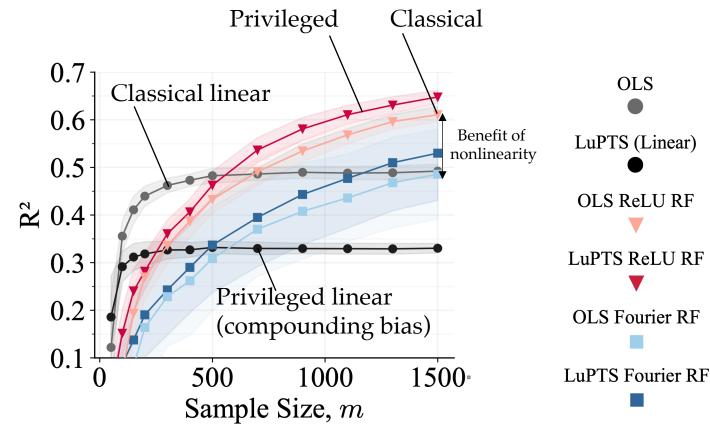
Random features are $\widehat{\Phi} = \sigma(WX)$ w. nonlinearity σ , random W. — For example, random single-layer ReLU NN

Proposition. if either learner uses \hat{d} random features for $\widehat{\Phi}$ $\mathcal{A}_{P/C}(D) \to f$ as $m > \hat{d} \to \infty$

Random feature regression*

We see both benefits of nonlinearity and of privileged information

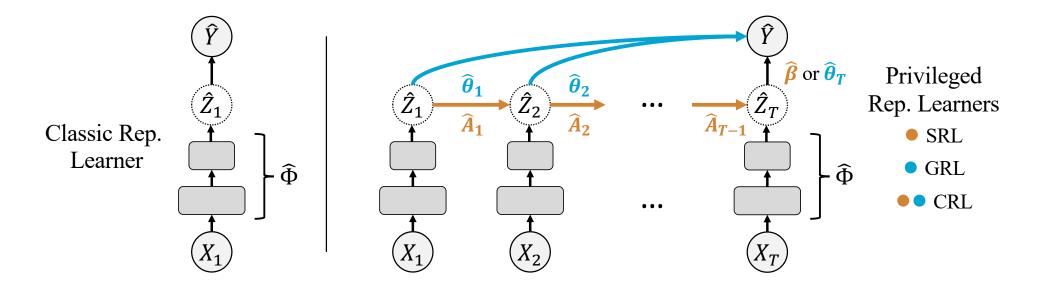
For linear estimators, bias compounds in the privileged learner



(b) **Square-Sign**, T = 5, d = 10.

Privileged representation learners

We can construct multiple representation learning architectures $\widehat{\Phi}$



Neural network regression

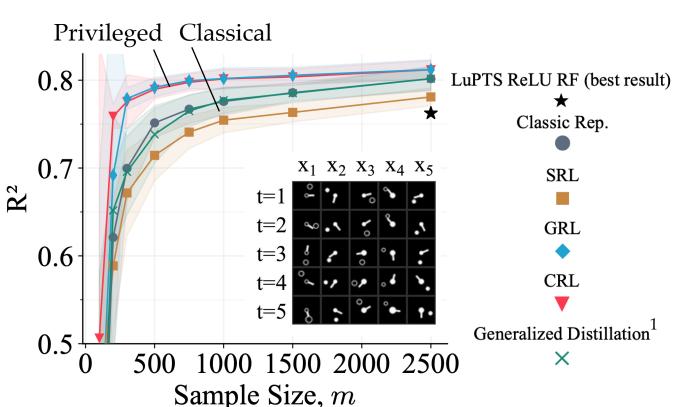
Data generated from a latent linear-Gaussian system,

 $Z_1, \ldots, Z_T \in \mathbb{R}^2.$

Observed variables *X* are image representations of 2D coords., like "clock faces"

Outcome is linear in *Z*

(c) **Clocks-LGS**, T = 6, q = 1.



Take-aways

- Preference for privileged learners is independent of sample size (finite regime) the gap varies with *m*
- Privileged information explains part of the variance in *Y*
- Random features and learned representations both perform better empirically *with* privileged information

Open questions

- Results in the biased / regularized case?
 - (E.g., finite sample random features)
- Causal structures beyond chain graphs (arbitrary DAGs?)
- Finite-sample preference guarantees beyond Rao-Blackwell
 - The theorem requires being able to characterize the predictions made by \mathcal{A}_{C} conditioned on \mathcal{A}_{P} . Possible for OLS but not in general

Fredrik D. Johansson fredrik.johansson@chalmers.se

These slides presented joint work with

Bastian Jung, Rickard Karlsson, Martin Willbo, Zeshan Hussain, Rahul Krishnan and David Sontag